

Using Virtual Machine Monitors to Overcome the Challenges of
Monitoring and Managing Virtualized Cloud Infrastructures

Mervat Adib Bamiah 1, Sarfraz Nawaz Brohi 2 and Suriayati Chuprat 3

Advanced Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur Malaysia
ABSTRACT

Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT
industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on
virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency,
flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization,
using this technique, memory, CPU and computational power is provided to clients’ VMs by utilizing the underlying
physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as
management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor
(VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous
hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM).
Considering the challenge of VM management, this paper describes several techniques to monitor and manage
virtualized cloud infrastructures.

Keywords: Virtualization, Hypervisor, Hyper-V, VMware, KVM, Xen.

1. INTRODUCTION
Virtualization is a technique or methodology of logically dividing computer resources (hardware, software) into

isolated VMs that execute instructions independent from the underlying Operating System (OS). Virtualization concept
was first developed by IBM in 1960s to fully utilize mainframe hardware by logically partitioning them into VMs. These
partitions will allow mainframe computers to perform multiple tasks and applications at the same time [1]. Issues such
as maintenance, management and infrastructure cost as well as disaster protection lead to the invention
of virtualization for x86 platforms. Virtualization dramatically improves efficiency and drives down overall IT cost [6].
Considering the flexibility of virtualization, cloud computing shifted towards virtualization where real resources such as
hardware, software, desktop, network components or storages are partitioned into virtual images and offered to clients as
on-demand services on pay-per-use pattern. A virtual cloud infrastructure is monitored by a hypervisor that allows
multiple VMs to share a single hardware host. Each VM appears to have the host’s processor, memory and other
resources. However, the hypervisor controls the host processor and resources, allocates what is required to each VM in
order to ensure that the guests run smoothly and independent of each other. Virtualization saves the cost for purchasing
and maintaining new hardware resources. For-example a physical hard disk or RAM can be divided into several
partitions and provided to several VMs. Cloud providers are residing the client applications on VMs that are created
from underlying physical hardware. Since applications of each client are placed on a separated VM, it provides the
advantage of isolation so if any VMs is malicious or affected with virus, will not affect the other VMs under the same
provider whereas in a physical cloud infrastructure when clients’ applications are placed on physical hardware there is
possibility of various threats that can influence the entire cloud datacenter for-example a malicious client’s interaction
can affect the providers hardware with virus or security threats, that can result into demolition of complete cloud
infrastructure. In order to implement VMMs on cloud infrastructures, normally cloud computing platforms are
virtualized based on x86 or x64 architecture.

2. VIRTUALIZATION CHALLENGES
The paradigm of virtualization brought up numerous advantages to a cloud data center such as increased productivity

and flexibility with reduced cost. However, it may also result into increased burden on a cloud infrastructure that may
causes issues of decreased performance, availability, reliability of components and provided service. The main
challenges of a virtualization are described as follows:

2.1. Managing a Virtualized Cloud Infrastructure
 In a virtualized cloud infrastructure, each client is allocated with a VM that is running client specific

applications. Since OS of cloud provider is running multiple VMs concurrently, it’s a difficult task to manage all the
VMs to keep the performance alive. Typical virtualization management tools are designed to provide insight only into

Fourth International Conference on Machine Vision (ICMV 2011): Machine Vision, Image Processing,
and Pattern Analysis, edited by Zhu Zeng, Yuting Li, Proc. of SPIE Vol. 8349, 83491M · © 2012 SPIE

CCC code: 0277-786X/12/$18 · doi: 10.1117/12.920880

Proc. of SPIE Vol. 8349 83491M-1

the virtualized elements of the virtualized environment, not into the data center as a whole. Similarly, existing data center
management tools are generally not aware of virtualization components such as VMs and VMMs. As a result,
administrators must contend with multiple management tools and incomplete information, which can increase the time,
cost, and complexity of managing virtualized infrastructures [3].

2.2. Resource Allocation
Running several VMs on single physical hardware increases server utilization but when number of VMs rapidly

keeps on increasing, the computation burden on main OS will increase. For-example when several VMs request for the
same I/O such as requesting a network card concurrently. The main OS will respond to one at a time so other VMs need
to wait for the requested resource, in certain cases VMs will face starvation due to shared access of hardware. If the main
server is switching between the VMs to provide accessibility of network card, it can result into reduced performance of
network and may cause extra latency and delay in response time [3].

2.3. Unexpected Additional Cost
Virtualization has proven to be anti-hardware technology, where several images of physical machines are created

virtually and used instead of purchasing new hardware that results in minimizing energy consumption and enhancing IT
resources without being worried about additional cost. However, in order to solve manageability, performance and
availability issues, sometimes providers need to buy additional hardware to keep the VMs alive. For-example when
storage requirements of clients rapidly increases provider needs to buy new storage devices because it requires an
enormous amount of capacity to create and store Virtual Machine Disk (VMDK) images that can increase from ten to
thousand over time, it may result in unexpected additional cost that is not even preplanned [3].

2.4. Network Traffic
Server virtualization platforms offer many advanced capabilities such as live VM migration, virtual software

switching and support for virtual LAN segmentation on existing network infrastructures. However, it may not be
equipped to support such features. Server virtualization can dramatically increase data storage traffic. For-example,
passing large amounts of data from multiple VMs through one host storage network connection can lead to serious
storage traffic congestion. Also, moving large VMDK images over WAN connections can be slow and interfere with
other traffic. Virtualized environments can offer significant improvements in data center productivity and flexibility if
administrators successfully take appropriate steps for creating and maintaining a virtualized cloud infrastructure [3].

3. MACHINE MONITORS FOR MANAGING VIRTUALIZED CLOUD INFRASTRUCTURES
In order to maintain concurrent access of VMs, cloud providers are using hypervisors that are actually tools

developed for monitoring and managing VMs such as providing virtual memory, CPU scheduling, network interfaces
and maintaining safe as well as efficient operating environment [2]. Hypervisor or VMM is a software-abstraction layer
that partitions a hardware platform into one or more virtual machines. Each of these virtual machines was sufficiently
similar to the underlying physical machine to run existing software unmodified [4]. Generally hypervisors are divided
into two categories i.e. Type 1 and 2. Type-1 hypervisor runs directly upon the hardware with a separated layer from the
host OS and Type-2 hypervisor runs together with the host OS [5]. Due to the isolation from the host OS, the security,
performance and scalability features in Type-1 are enhanced than Type-2. The architectures of VMM and VM managing
as well as monitoring techniques are described as follows:

3.1. Xen Hypervisor
Xen is a Type-1 hypervisor. In order to create a secure operating environment, Xen hypervisor runs guest VMs in

isolated environments called as domains i.e. Domain0 (Dom0) and DomainU (DomU) due to the accessibility privileges.
When Xen boots, one of the first things it does is to load a dom0 guest kernel. This is typically specified in the boot
loader as a module and can be loaded without any file system drivers being available. Dom0 is the first guest to run and
has higher privileges [1]. DomU guests have lower privileges and can’t access the hardware. Xen does not include any
device drivers or user interface by itself, these all are provided by the OS and user space tools running in dom0 guest
which is typically a Linux modified kernel. The most obvious task performed by the dom0 guest is to handle I/O
operations requested by domU guest as shown in figure-1 [7]. Dom0 and domU communicate by using device drivers.
Since dom0 guest runs at a higher level of privilege than domU it can access the hardware directly. For this reason, it is
vital that the privileged guest should be properly secured. As I/O requests are passed to dom0, memory management and
CPU scheduling are the responsibility of Xen hypervisor. The mechanism used by Xen hypervisor to assign virtual
memory to VMs is referred as Memory Overcommit. Using this technique, it is possible to provide virtual memory more
than actual physical memory. For-instance if a provider has 6GB of physical RAM and wants to allocate to VMs each of

Proc. of SPIE Vol. 8349 83491M-2

them consuming 1GB simultaneously, maximum it can be assigned to five VMs because 1GB will be reserved for the
operations of dom0 guest, but with the use of overcommit technique it’s possible to run six or even more than ten VMs
using 1GB simultaneously [8]. Xen architecture is designed by considering security of guests VMs, for-example all
domains are isolated from each other so if any of the domains is affected with virus or it is malicious it will not affect the
other domains. Secondly the privilege levels also play an integral role to keep the operating environment safe and secure,
as using Xen service model domU guest is not allowed to directly interact with physical hardware so it keeps the
underlying physical hardware safe from the side effects of clients’ VMs. Beside service model Xen now uses pass-
through model. Under this model domU guests are allowed to interact directly with hardware but still restricted to certain
hardware devices according to their privileges [9].

Fig. 1: Xen Hypervisor.

Fig. 2: ESXi Hypervisor.

3.2. VMware ESXi
ESXi is a proprietary hypervisor. The architecture of ESXi consists of an OS called VMkernel and processes running

on top of it. VMkernel is an OS developed by VMware to manage and execute all the applications, agents and VMs.
VMkernel includes various OS features such as resource scheduling, I/O stack and device drivers. The main components
of ESXi hypervisor include Direct Console User Interface (DCUI), VMM and Common Information Module (CIM) as
shown in figure-2 [10]. DCUI is the local user interface that is displayed only on the console of an ESXi system. It
provides a BIOS-like, menu-driven interface for interacting with the system. Its main purpose is initial configuration and
troubleshooting. One of the components in VMkernel is dcui, which is used by the DCUI process to identify itself when
communicating with other components in the system. The VMM in VMware is the process that provides the execution
environment for a VM as well as a helper process known as VMX. The memory management technique used by ESXi is
similar to Xen. It also uses memory overcommit technique that provides illusion of providing virtual memory more than
physical memory. ESXi is using this technique in such a way that if a domain is idle or nearly so, is probably not using
much memory that can be available to be used in another domain or for a newly created domain. This dynamic memory
allocation enables the provider to run as many as VMs without being worried about physical memory requirements [11].

VMware ESXi is designed with powerful security techniques to protect the data on a virtual cloud infrastructure.
ESXi works by using VMsafe, is a new security technology that helps protect virtualized workloads in a way that were
previously not possible with physical machines. VMsafe provides a set of security APIs that enable third-party security
products to gain the same visibility as VMware ESX or ESXi into the operation of a VM to identify and eliminate
malware, such as viruses, trojans and key-loggers. VMware ESX and ESXi are protected from common attacks and
exploits by assuring the integrity of the VMkernel, a core component of the ESXi hypervisor. Disk integrity techniques
in ESX and ESXi protect the boot-up of the hypervisor by utilizing the Trusted Platform Module (TPM), a hardware
device embedded in servers. ESXi is also using SSL encryption to ensure secure connections [10].

3.3. Kernel Virtual Machine (KVM)
The process of managing the VMs on cloud is similar to management of several simple applications running on a

single OS concurrently. Instead of applications, there are VMs that are further running several applications
simultaneously. If VMs considered as OS processes, then virtualized cloud infrastructure can be monitored and
maintained as a general computing infrastructure by using any OS kernel. KVM actually considers VMs as simple Linux
processes so they have modified Linux OS into a hypervisor as shown in figure-3 [12]. Since Linux is an open source OS
and it has several OS components such as memory manager, process scheduler, I/O stack device drivers and security
manager that are actually required for the implementation of a hypervisor, KVM is designed by turning the Linux kernel
into a hypervisors. As Xen has two domains for VMs, similarly Linux OS divides the guest VMs in two modes (user,
kernel) according to the access privileges. The user mode is considered as unprivileged and kernel mode is considered as
privileged process. By default Linux starts in user mode and it changes to kernel mode when required. KVM is
developed by adding one more extra to the existing modes of execution i.e. guest mode as shown in figure-4 [13]. The

Proc. of SPIE Vol. 8349 83491M-3

guest mode i
guest process
exits from gu
behalf of a gu
able to run m

Each VM
through Quic
environment
memory man
Linux proces
supported by
memory. Sin
based on the
developed by
security as w

3.4. Hype
Hyper-V

server that m
from Micros
server conso
resources eff
[15]. Hyper-
drivers for be

. Hyper-
one physical
been enhanc
depend on a
also slower. A

itself has two
s is executing n
uest-user mode
uest. In the KV

multiple applica

 Fig. 3: KVM h
M is scheduled
ck Emulator (
including (dis

nagement and
ss and can be
y Non-Uniform
nce we already

standard Linu
y the US Nat

well as policy en

er-V
is implemente

maximizes the
oft which is in

olidation by m
ficiently witho
V holds the h
etter performan

V has a weakn
host over to a

ed and added
single VMM t
As shown in fi

normal modes
non-I/O guest
e due to I/O o
VM model eac
ations concurre

hypervisor.
d by standard
(QEMU). It is
sks, graphic ad
security mecha
swapped, bac

m Memory Acc
y discussed, in
ux security pol
tional Security
nforcement [14

ed as a role in W
utilization of

ntegrated into
maintaining the
out acquiring, m
ypervisor sma
nce

ness that it doe
another while
in version R2

that is code he
igure-5 [15], th

s user and kern
code, it will ru

or other specia
ch guest VM is
ently because it

Linux schedu

s a platform v
dapters, BIOS,
anism of Linu
ked by large p

cess (NUMA) t
KVM a VM i
icies. The Linu
y Agency to a
4].

Windows Serv
server hardwa
all Dell suppo
logical OS an

maintaining, p
aller (less than

Fig. 5
es not support l
powered up an

2. The hyper-V
eavy. The VMM
he guests OSs n

nel, can be cal
un in guest-use

al instructions.
s implemented
t is acting as a

uler. Using KV
virtualization so

PCI bus, USB
ux OS. The me
pages for bette
technology. It
is implemented
ux kernel inclu
add mandatory

er 2008 and ru
are. Hyper-V
orted Windows
nd application

powering, cool
1MB) by usin

5: Hyper-V Hyperv
live migration
nd server can
V architecture
M emulates an
need to request

lled as guest-u
er mode. In gu
In user mode,
as a simple Li
virtual OS.

VM, the I/O r
olution that al

B and network d
emory for a VM
er performance
allows VMs to
d as a Linux p
udes Security E
y access contr

uns multiple OS
is free hyperv
s Server 2008

n isolation requ
ling or admini
ng an adminis

visor.
that prevents c
be moved ove
is based on m

nd handles all
t hardware acc

user and guest-
uest-kernel mod
, the Linux pr
inux process an

Fig. 4: KVM gues
equests of a g
llows virtualiz
devices). KVM
M is stored as
e. Memory ma
o efficiently ac
process, hence
Enhanced Linu
rols, multi-lev

Ss on VMs res
visor-based vir
x64 Editions

uired while sh
stering additio

strative parent

crash (the abili
er and running
micro- kerneliz
lower level ac
ess from the hy

-kernel mode.
de, the process
ocess perform
nd that process

st mode.
guest VM are
zation of an en
M inherits the p

memory for a
anagement in
ccess large am
the security o

ux (SELinux) a
vel and multi-

sides on single
rtualization tec
OSs. Hyper-V

haring physical
onal physical h

OS that has a

ty to move a V
full time) wh

zed hypervisor
cesses and the
ypervisor as th

When a
s handles
s I/O on
s itself is

handled
ntire PC
powerful
any other
Linux is

mounts of
of VM is
a project
category

physical
chnology

V enables
l system
hardware
all of the

VM from
ich have
rs which
erefore is
he device

Proc. of SPIE Vol. 8349 83491M-4

drivers are integrated into the hypervisor. The hypervisor as a micro-kernel provides limited functionality such as
managing memory address space, process communication and management while other hardware management tasks are
typically managed by processes independent of the kernel. It does not contain device drivers that are present in the OS in
the parent or root partition. In hyper-V each VM run in a separate logical partition. A root or parent partition contains the
Windows 2008 x64 OS which is responsible for creating the other partitions that contain different guest OSs. This parent
partition contains a virtualization stack which is combination of user and kernel level code and interfaces with the
hypervisor and the child partitions. The virtualization stack manages memory for child partitions and has direct access to
the hardware resources that creates partitions using calls to the hypercall application programming interface. The
hypervisor monitors processor interrupts and guest OSs do not have access to the processor. The hypervisor enforces
memory, CPU usage and access specifications. The parent partition manages the I/O devices such as keyboard, mouse,
printer and other devices connected to the hypervisor. It handles access to devices through virtual devices. Device
virtualization is achieved through the use of a provider-consumer model. The child partitions containing guest OSs
request the virtual devices through the virtual memory bus. Access to the physical devices is controlled by the
hypervisor. Hyper-V improve security by providing the ability to disable the execution bit preventing viruses and worms
from executing by avoiding the need to load third-party drivers in the hypervisor as it is micro-kernelized [15].

4. CONCLUSION AND FUTURE WORK
Several VMM techniques are available in industry for managing the virtualized cloud infrastructures. The most

efficient and industry required VMM includes Xen, VMware, KVM and Hyper-V. The architecture of every VMM is
different from each other. For-example Xen divides the VMs in separate environments called domains such as dom0 and
domU whereas KVM divides the VMs in guest-user and guest-kernel modes according to privilege accesses. On the
other hand Hyper-V divides the VMs into logical partitions i.e. parent and child and VMware using its own OS
VMkernel. It depends on the cloud providers to use any of these hypervisors according to their requirements and
suitability of infrastructure. A well managed virtual cloud infrastructure can offer significant improvements in data
center such as productivity and flexibility. Considering the current contributions in field of cloud virtualization, it is
obvious that there are still tremendous opportunities for industry developers and academic researchers to contribute in
this field and bring their innovative and valuable contributions to IT industry.

REFERENCES
[1] Xiantao Zhang and Yaozu Dong, “Optimizing Xen VMM Based on Intel® Virtualization Technology,” in Internet

Computing in Science and Engineering, 2008. ICICSE ’08. International Conference on, 2008, pp. 367-374.
[2] Wei Chen, Hongyi Lu, Li Shen, Zhiying Wang, Nong Xiao, and Dan Chen, “A Novel Hardware Assisted Full

Virtualization Technique,” in Young Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for,
2008, pp. 1292-1297.

[3] Dell, "Overcoming 7 Key Challenges to Virtualization", http://www.dell.com/downloads/global/power/ps1q09-
50090198-F5.pdf, 2009.

[4] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current technology and future trends,” Computer, vol.
38, no. 5, pp. 39-47, 2005.

[5] T. Naughton, G. Vallee, S. L. Scott, and F. Aderholdt, “Loadable Hypervisor Modules,” in System Sciences
(HICSS), 2010 43rd Hawaii International Conference on, 2010, pp. 1-8.

[6] S. J. Vaughan-Nichols, “New Approach to Virtualization Is a Lightweight,” Computer, vol. 39, no. 11, pp. 12-14,
2006.

[7] David Chisnall, “A definitive guide to Xen hypervisor”, Prentice Hall, 2008.
[8] Dan Magenheimer, "Memory overcommit", http://xen.org/index.php/2008/08/27/xen-33-feature-memory, 2008.
[9] Amit Aneja, “Xen Hypervisor: Designig Embeded Virtualized Intel Architecture”,

http://download.intel.com/design/intarch/PAPERS/325258.pdf, 2011.
[10] Charu Chaubal, “Architecture of VMware ESXi”,

http://www.vmware.com/files/pdf/vmware_esxi_architecture_wp.pdf, 2008.
[11] I. Ahmad, J. M. Anderson, A. M. Holler, R. Kambo, and V. Makhija, “An analysis of disk performance in VMware

ESX server virtual machines,” in Workload Characterization, 2003. WWC-6. 2003 IEEE International Workshop
on, 2003, pp. 65-76.

[12] M. Tim Jones, “Anatomy of KVM Hypervisor”, http://www.ibm.com/developerworks/linux/library/l-
hypervisor/index.html?ca=dgr-lnxw06Lnx-Hypervisor&S_TACT=105AGX59&S_CMP=grlnxw06, 2009.

[13] Qumranet, “KVM: Kernel-based Virtualization Driver”, http://www.linuxinsight.com/files/kvm_whitepaper.pdf,
2006.

[14] Redhat, “Kernel Based Virtual Machine”, http://www.redhat.com/f/pdf/rhev/DOC-KVM.pdf , 2009.
[15] Naveed Alam, “Survey on Hypervisors”, http://salsahpc.indiana.edu/b534projects/sites,

/default/files/public/6_Survey%20On%20Hypervisors_Alam%20Naveed%20Imran.pdf, 2009.

Proc. of SPIE Vol. 8349 83491M-5

