
Exploit of Open Source Hypervisors for Managing
the Virtual Machines on Cloud

Sarfraz Nawaz Brohi
Advanced Informatics School
Universiti Teknologi Malaysia

Kuala Lumpur, Malaysia
sarfraz_brohi@hotmail.com

Mervat Adib Bamiah
Advanced Informatics School
Universiti Teknologi Malaysia

Kuala Lumpur, Malaysia
mervatbamiah@yahoo.com

Abstract— If you need milk, would you buy a cow? Answer will
be definitely no, so why to buy software, hardware or storage
when you just require service. This innovative and
revolutionizing mode of acquiring and utilizing IT resources is
offered by cloud computing where IT resources are provided as
on-demand services whether it’s a software, hardware or storage
capacity. In order to reduce the global warming, cloud
computing is moving towards virtualization, under this
technique, memory, CPU and computational power is provided
to clients’ virtual machines (VMs) virtually based on reality of
the physical hardware. In a virtualized cloud environment, each
client has a VM that is running client specific applications. As the
operating system (OS) of cloud provider is running multiple VMs
concurrently, it’s a challenging task to manage the entire VMs.
Virtual Machine Manager (VMM) so called hypervisor is the tool
used by cloud providers to manage the VMs in order to eliminate
downtime and to provide efficient storage, CPU as well as
computational power to each VM. There are several hypervisors
available in industry such as VMware, Hyper-V, Xen and Kernel
Virtual Machine (KVM). In order to contribute in the field of
cloud virtualization, this research paper represents the
virtualization of hypervisor on x86 architecture and conducts
comparison analysis on two open source hypervisors i.e. Xen and
KVM to clarify the suitability of these hypervisor for managing
the VMs on cloud.

Keywords: Virtualization, Hypervisor, Xen, KVM

I. INTRODUCTION
 x86 architecture is proven to be an influential platform for
virtualization in enterprise computing due to its powerful
features such as large scale multithreading with eight or more
processing cores, high speed CPU and chipset for advanced
reliability, availability and serviceability (RAS) [2]. In an
operating environment, OS acts as a middleware between the
users and hardware.

Figure 1. The x86 architecture.

The users’ requests are managed by OS, where they are
accessing the OS through application programs that have
limited privileges to access the physical hardware [1]. In order
to provide a secure operating environment, the architecture of
x86 is divided into rings as shown in Fig.1 [2]. Each ring
defines a privilege access level. The users’ applications are
isolated from the OS. These applications are placed at ring-3,
that is lower privileged layer and OS is placed at Ring-0 that is
higher privilege layer. Ring 1 and 2 are not used yet. The level
of privilege represents the access level to the hardware, so OS
have full privileges to access the underlying hardware whereas
applications cannot execute a system call or instruction that is
reserved by OS [2]. In a virtualized cloud computing
environment several VMs running with their OSs are using the
same underlying hardware concurrently as shown in Fig.2 [2].
The VMs need to access the hardware with the help of a
middleware. In this case, instead of OS there is need to use
hypervisor as middleware between VMs and hardware. A
hypervisor manages the communication link between VMs
and the physical hardware.

 Figure 2. The x86 virtualized architecture.

 The VMs are placed at ring-3 in x86 virtualized
architecture. When the OS of a VM is running at ring-3, it can
issue a system call that is not allowed for a ring-3 application.
If the underlying hardware detects the system call it will
abolish the VM [2]. In order to handle these kind of issues and
manage the VMs efficiently such as providing dynamic virtual
memory and CPU scheduling, several vendors has provided

 Sarfraz Nawaz Brohi* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES
 Vol No. 9, Issue No. 1, 055 - 060

ISSN: 2230-7818 @ 2011 http://www.ijaest.iserp.org. All rights Reserved. Page 55

IJA
EST

mailto:sarfraz_brohi@hotmail.com
mailto:mervatbamiah@yahoo.com

solutions by introducing their own hypervisors that are being
used together with existing OSs. The most popular hypervisors
used for cloud computing are Xen, VMware, Hyper-V and
KVM. Since Xen and KVM are open source hypervisors,
these are the most demandable and competitive hypervisors
being used on cloud. In this research paper we will compare
these both hypervisors to determine most efficient and
powerful hypervisor that fulfils the need of a cloud computing
platform but before we conduct the comparison analysis, we
need to discuss the use of Xen and KVM in enterprise cloud
computing.

II. THE USE OF XEN AND KVM HYPERVISORS IN CLOUD

COMPUTING

A. Xen Hypervisor
 Xen hypervisor is a distinctive open source technology,
developed collaboratively by the Xen community and
engineers from more than fifty innovative datacenter solution
vendors, including AMD, Citrix, Dell, Fujitsu, HP, IBM, Intel,
NEC, Novell, Red Hat, Samsung, SGI, Sun, Unisys, and many
other industry leaders. It is licensed under General Public
License (GPL). It resides between the VMs and hardware as
shown in Fig.3 [3]. Mainly there are two types of hypervisor
i.e. Type 1 and 2. Xen is a Type-1 hypervisor. A Type-1
hypervisor runs directly up on the hardware with a separated
layer from the host OS. Type-2 hypervisor runs together with
the host OS [4].

 Figure 3. Xen Hypervisor.

 Due to the isolation from the host OS, the security,
performance and scalability features in Type-1 are more
enhanced than Type-2. In a virtualized Xen cloud computing
model, each client has its own VM that is running client
applications. In order to create a secure operating
environment, Xen hypervisor divides the VMs into two
domains i.e. Domain0 (Dom0) and DomainU (DomU) due to
the accessibility privileges. The Dom0 VMs have the higher
privileges and they can access the hardware whereas DomU
VMs have lower privileges and cannot directly access the
hardware as shown in Fig.4 [5]. When the Xen hypervisor is
started, for the first time it loads the Dom0 VM. Normally the
user of Dom0 is a system administrator who has privilege to
use the interface of hypervisor to create, delete or manage any

DomU VM. Each DomU VM contains a modified Linux
kernel that includes front end drivers and instead of
communicating directly with hardware, it communicates with
the Xen hypervisor [5].

 Figure 4. Xen architecture.

 For each DomU VM, CPU and memory access operations
are handled directly by the Xen hypervisor but I/O is directed
to Dom0 because Xen hypervisor is not able to perform any
I/O operation. There is a communication channel between
Dom0 and DomU, through which DomU VM send I/O
requests to Dom0 by using front end drivers as shown in Fig.5
[6].

 Figure 5. Xen service model.

 The above stated model is called Xen service model. There
are few limitations identified in this model. For-example when
number of DomU VMs increase and each VM request Dom0
for I/O, the data processing efficiency of Dom0 will decrease,
so it can affect the performance of overall service. If any VM
contains virus, when it communicates with Dom0, it can affect

 Sarfraz Nawaz Brohi* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES
 Vol No. 9, Issue No. 1, 055 - 060

ISSN: 2230-7818 @ 2011 http://www.ijaest.iserp.org. All rights Reserved. Page 56

IJA
EST

Dom0 and if it is affected, the entire service provided will fail
because Dom0 is the only resource that manages all DomU
VMs [6]. Due to these risks of failure Xen enhanced their
hypervisor by introducing pass-through model. In this model
each DomU VM have direct access to hardware, but only
limited to some specific hardware devices due to security
concerns. The pass-through model is shown in Fig.6 [6].

Figure 6. Xen pass-through model.

The use of pass-through model reduces the load on the

Dom0 as well as reducing data transfer from the hardware to
the DomU. The DomU is not required to have front end
drivers in order to send I/O requests to Dom0. Xen Hypervisor
version 3.0 supports pass through model to manage clients’
VMs on cloud.

B. KVM Hypervisor
In a multitasking environment, when multiple applications

are running on a single OS, the OS scheduler maintains a
schedule for the applications to run concurrently without any
process interference. Similarly in a cloud computing
environment, when VMs of several users are running on the
provider’s OS, a hypervisor is used to manage each VM to
ensure safe and efficient workflow, so a hypervisor requires
the similar features and components as of OS. Since Linux is
an open source OS and it has several OS components such as
memory manager, process scheduler, I/O stack device drivers,
security manager that are actually required for the
implementation of a hypervisors, KVM is developed by
implementing Linux kernel module with enhanced hypervisor
functionalities rather than reinventing the wheel i.e.
redeveloping the developed components from beginning [2].
Each Linux process has two modes of execution user and
kernel mode. The user mode is considered as unprivileged and
kernel mode is considered as privileged process. The default
mode for a process is user mode. It changes to the kernel mode

when it requires some sort of services from kernel such as
request for writing to hard disk. While implementing the
KVM, the developers added a third mode for process, called
as guest mode as shown in Fig.7 [7].

 Figure 7. KVM guest mode.

 The guest mode itself has two normal modes user and
kernel, can be called as guest-user and guest-kernel mode.
When a guest process is executing non-I/O guest code, it will
run in guest-user mode. In guest-kernel mode, the process
handles exits from guest-user mode due to I/O or other special
instructions. In user mode, the Linux process performs I/O on
behalf of a guest. The model of KVM is shown in Fig.8 [8].

 Figure 8. KVM architecture.

 In the KVM model each guest VM is implemented as a
simple Linux process and that process itself is able to run
multiple applications concurrently because it is acting as a
virtual OS. Each VM is scheduled by standard Linux
scheduler. Using KVM, the I/O requests of a guest VM are
handled through Quick Emulator (QEMU), it is a platform
virtualization solution that allows virtualization of an entire
PC environment (including disks, graphic adapters, BIOS, PCI
bus, USB and network devices) [2]. Any I/O requests a guest
OS makes are intercepted and routed to the user mode to be
emulated by the QEMU process. The memory virtualization is

 Sarfraz Nawaz Brohi* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES
 Vol No. 9, Issue No. 1, 055 - 060

ISSN: 2230-7818 @ 2011 http://www.ijaest.iserp.org. All rights Reserved. Page 57

IJA
EST

provided to guest VMs by dev/kvm device, each VM has its
own memory space that provides isolation of the VMs from
each other. Physical memory of guests is actually the virtual
memory provided to their OSs by KVM hypervisor [7].

III. XEN OR KVM: HYPERVISORS COMPARISON ANALYSIS
In the previous section we described the use of Xen and

KVM. In this section we will compare both hypervisors to
decide which one of them is the most suitable for managing
VMs. Considering a cloud computing environment, the
features of a good hypervisor should include appropriate
support of security, memory management, performance and
scheduling policy. Our comparison of Xen and KVM is based
on the aforesaid features.

A. Security
 Since we already discussed, in KVM a VM is implemented
as a Linux process, hence the security of VM is based on the
standard Linux security policies. The Linux kernel includes
Security Enhanced Linux (SELinux) a project developed by
the US National Security Agency to add mandatory access
controls, multi-level and multi-category security as well as
policy enforcement. SELinux provides strict resource isolation
and internment for processes running in the Linux kernel. The
security policies to secure VMs are defined by using sVirt that
is built on SELinux to implement security control features.
System administrator uses sVirt to define security policies
such as a VM cannot access another VM, but they can share
some resources according to the requirements of an
organization. In a virtualized cloud environment, hackers can
use the hypervisor as main source of attack on overall system.
If the hypervisor is compromised, hackers can attack all the
VMs on cloud. In order to secure the hypervisor, SELinux and
sVirt provide powerful security techniques to secure the
hypervisor [2].
 On the other hand Xen provides a mechanism of isolating
the guests from each other. A DomU guest cannot access other
DomU guests, hence if any VM is malicious or affected with
virus will not affect other guests. Secondly, Xen supports
access privileges for-example, only Dom0 guest is allowed to
communicate with hardware. Thirdly, the Xen hypervisor
contains a tiny code footprint which limits the areas of attack.
Xen is also in collaboration with “The Invisible Things Lab”,
they focus on identifying security issues in computing
infrastructures. Xen works with this group to overcome any
security loop holes identified in Xen hypervisor [9].

B. Memory Management
KVM inherits the powerful memory management

mechanism of Linux. The memory for a VM is stored as
memory for any other Linux process and can be swapped,
backed by large pages for better performance. Memory
management in Linux is supported by Non-Uniform Memory
Access (NUMA) technology. It allows VMs to efficiently
access large amounts of memory. KVM supports the latest

memory virtualization features from CPU vendors with
support for Intel's Extended Page Table (EPT) and AMD's
Rapid Virtualization Indexing (RVI) to deliver reduced CPU
utilization and higher throughput. Memory page sharing is
supported through a kernel feature called Kernel Same-page
Merging (KSM). KSM scans the memory of each VM and
where VMs have identical memory pages, KSM merges these
into a single page that it shared between the VMs, storing only
a single copy. If a guest attempts to change this shared page it
will be given its own private copy. When consolidating many
VMs on the hosts there are many situations in which memory
pages may be shared for example unused memory within a
windows VM, common DLLs, libraries, kernels or other
objects common between VMs. With KSM more VMs can be
consolidated on each host, reducing hardware costs and
improving server utilization [2].
 Xen uses the memory overcommit strategy to provide
virtual memory to VMs. Memory overcommit is the technique
that provides an illusion of having virtual memory more than
the physical memory, in other words the sum of total memory
assigned to VMs can be greater than actual physical memory.
For example, if a machine has 5GB of RAM and we want to
run as many as possible 1GB VMs, we can run maximum four
VMs each of 1GB because dom0 requires some physical
memory. With the new memory overcommit feature in Xen
3.3, we can run six, ten or even more VMs only on 5GB
RAM. The concept of overcommit sounds magical, but
actually it’s technical. Suppose a domain that is idle or nearly
so, is probably not using much memory, this memory can be
made available to use in another domain or for a newly created
domain. The complicated part is to determine how much
memory can be taken away from domains without causing
problems for them and even more importantly, how to give the
memory back if a domain suddenly needs it again. This careful
memory balancing ideally should be done in a management
tool that can monitor memory needs of all domains and add or
subtract memory from each domain as needed. In certain cases
this technique is not useful enough such as environments
where all domains are heavily utilizing the memory and none
of them are having idle memory. But for environments those
require a ratio of high virtual-domains-to-physical-machines
and that are willing to make some tradeoffs, memory
overcommit can substantially increase VM density and saves
cost. Memory is taken from one domain and given to another
using the existing Xen ballooning mechanism that has recently
improved to be more robust [10].

C. Performance
KVM inherits the performance and scalability of Linux

supporting VMs with up to 16 virtual CPUs, 256GB of RAM
and host systems with 256 cores and over 1TB of RAM. KVM
also supports live migration which provides the ability to
move a running VM between physical hosts with no
interruption to service. Live migration is transparent to the end
user, the VM remains powered on, network connections

 Sarfraz Nawaz Brohi* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES
 Vol No. 9, Issue No. 1, 055 - 060

ISSN: 2230-7818 @ 2011 http://www.ijaest.iserp.org. All rights Reserved. Page 58

IJA
EST

remain active and user applications continues to run while the
VM is relocated to a new physical host. In addition to live
migration KVM supports saving a VM's current state to disk
to allow it to be stored and resumed at a later time [2].

Xen is very efficient in terms of performance due to the
implementation of techniques such as para-virtualization,
pass-through model and isolation of hypervisor from
underlying OS. Firstly, para-virtualization allows the guest OS
to co-operate with the hypervisor to improve overall
performance for I/O, CPU and memory virtualization. By
being aware that OS is running in a virtualized platform,
modified OS is able to assist the hypervisor in a variety of
tasks. Secondly, the use of pass-through technology allows a
guest domain to communicate with a specific piece of
hardware directly without having to send communication to
and from the Dom0. Allowing a guest domain direct access to
hardware significantly improves time to response for a guest,
lowers processing time by eliminating the Dom0 middleman
and reduces load on the Dom0 queue but security is still
maintained as the guest is restricted in what hardware it can
access thereby preventing guest interaction. Thirdly, the
isolation of hypervisor from OS ensures maximum
performance. Any OS will have a series of tasks that must be
scheduled and processed during normal operation. The
majority of these tasks are not related to processing the
virtualized guests thus can have potential impact on overall
performance. The Xen hypervisor is able to process the
virtualized guests without any OS overhead and can even be
tuned specifically to maximize guest processing based on user
demands and requirements for a given guest. The scheduler
within Xen is also customized for a virtualized environment
thereby ensuring that a Xen infrastructure is capable of
meeting the highest user expectations [9].

D. Scheduling Policy
In the KVM model, a VM is scheduled and managed by

the standard Linux kernel. The current version of the Red Hat
Enterprise Linux kernel supports setting relative priorities for
any process including VMs. This priority is for an aggregate
measure of CPU, memory, network and disk I/O for a given
VM and provides the first level of Quality of Service (QoS)
infrastructure for VMs. The modern Linux scheduler accrues
some further enhancements that will allow a much finer-grain
control of the resources allocated to a Linux process and will
allow guaranteeing a QoS for a particular process. Since in the
KVM model, a VM is a Linux process, these kernel
advancements naturally accrue to VMs operating under the
KVM architectural paradigm. Specifically, enhancements
including Completely Fair Scheduler (CFS), Control Groups
(CGroups), network name spaces and real-time extensions will
form the core kernel level infrastructure for QoS, service
levels and accounting for VMs. The Linux kernel includes
CFS to provide advanced process scheduling facilities based
on experience gained from large system deployments. The
CFS scheduler has been extended to include the CGroups

resource manager that allows processes and in the case of
KVM, VMs to be given shares of the system resources such as
memory, CPU and I/O. Unlike other VM schedulers that give
proportions of resources to a VM based on weights, CGroups
allow minimums to be set not just maximums, allowing
guaranteed and more resources to a VM if available[2].
 Xen provides variety of algorithms for CPU scheduling.
Xen API includes Borrowed Virtual Time (BVT), Atropos and
Round Robin schedulers that are provided at the booting time
for the selection. The BVT, Atropos and Round Robin
schedulers are part of the normal Xen distribution but users
are allowed to add more algorithms for scheduling. BVT
provides proportional fair shares of the CPU to the running
domains. Atropos can be used to reserve absolute shares of the
CPU for each domain. Round-robin is provided as an example
of Xen's internal scheduler API. Domains are statically
assigned to CPUs, either at creation time or when manually
pinning to a particular CPU. The current schedulers then run
locally on each CPU to decide which of the assigned domains
should run there. Domains are preemptively scheduled by Xen
according to the parameters installed by Dom0. However, a
domain may choose to explicitly control certain behavior with
the use of a hyper call such as sched op(unsigned long op).
This hyper call will request a scheduling operation from
hypervisor. The options that can be passed as parameters are
yield, block, and shutdown. Yield keeps the calling domain
runnable but may cause a reschedule if other domains are
runnable, block removes the calling domain from the run
queue and cause is to sleep until an event is delivered to it.
Shutdown is used to end the domain's execution, the caller can
additionally specify whether the domain should reboot, halt or
suspend [11].

IV. CRITICAL ANALYSIS: XEN AND KVM
In section-III, we compared the features of Xen and KVM,

it is identified that KVM is based on Linux features because
memory management, scheduling policy and security of KVM
are inherited from standard Linux kernel. In this regard, Xen
developers claim that KVM is not a true hypervisor instead it
is the conversion of Linux kernel as a hypervisor [12]. On the
other hand, Xen developers have added new techniques of
memory management, scheduling policy and security to
implement the Xen hypervisor. In this regard, KVM claims
that it is the process of reinventing the wheel, there is no need
to develop these features as they are already available in any
OS [2]. This seems to be a kind of war between hypervisors.
For an enterprise it is a challenging task to select a hypervisor.
But still these two hypervisor are mostly being used and
adopted by several enterprises such as Xen hypervisor is
currently available in solutions from Avaya, Cisco, Citrix,
Fujitsu, Lenovo, Novell, Oracle, Samsung, VALinux, and
cloud providers including Amazon, Cloud.com, GoGrid and
Rackspace are amongst the many cloud solutions using Xen as
their virtualization foundation [12]. In addition to the broad
Linux community KVM is supported by some of the leading

 Sarfraz Nawaz Brohi* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES
 Vol No. 9, Issue No. 1, 055 - 060

ISSN: 2230-7818 @ 2011 http://www.ijaest.iserp.org. All rights Reserved. Page 59

IJA
EST

vendors in the software industry including Red Hat, AMD,
HP, IBM, Intel, Novell, Siemens, SGI and others [2]. In order
to clarify the efficiency of KVM and Xen for managing a
virtualized cloud platform we presented the comparison
analysis among them by considering the features that are
required for an efficient hypervisor. The comparison analysis
clearly represents the efficiency of Xen and KVM hypervisor
for managing the VMs on cloud.

V. CONCLUSION AND FUTURE WORK

 This research paper described the use of hypervisor on x86
virtualized architecture for cloud virtualization. The most
demanding open source hypervisors Xen and KVM are
compared according to their techniques of supporting security,
memory management, performance and scheduling policy. It
is concluded that both hypervisors are efficient enough to
manage the VMs on cloud but still it depends on the adopting
enterprise to use either KVM or Xen. The comparison of their
technique will enable an enterprise to judge on the selection of
suitable hypervisor for managing their virtualized cloud
platform. The discussion and comparison analysis in this
research paper was carried out on technical, conceptual and
logical basis based on the research conducted from the sources
of Xen and KVM. By continuing the future work of this
research, we will conduct experimental sessions to evaluate
the performance of on Xen and KVM hypervisors.

ACKNOWLEDGMENT
The credit of accomplishing this research paper goes to

several entities. First, we would like to thank our parents. They
always supported us throughout our complete study life.
Secondly, we are thankful to our supervisor for giving us an
encouragement to write this research journal. Finally, we are
thankful to IJAEST for always giving us the right response at
the right time that enables us to publish high quality research
papers.

REFERENCES
[1] Wei Chen, Hongyi Lu, Li Shen, Zhiying Wang, Nong Xiao, and Dan

Chen, “A Novel Hardware Assisted Full Virtualization Technique,” in
Young Computer Scientists, 2008. ICYCS 2008. The 9th International
Conference for, 2008, pp. 1292-1297.

[2] Redhat, “Kernel Based Virtual Machine [online]”, 2009, Available from
http://www.redhat.com/f/pdf/rhev/DOC-KVM.pdf , Accessed [4th Jul
2011].

[3] Xen, “Why Xen Hypervisor [online]”, 2009, Available from
http://www.xen.org/files/Marketing/XenBrochure_Q12009.pdf,
Accessed[6th Jul 2011].

[4] T. Naughton, G. Vallee, S. L. Scott, and F. Aderholdt, “Loadable
Hypervisor Modules,” in System Sciences (HICSS), 2010 43rd Hawaii
International Conference on, 2010, pp. 1-8.

[5] Redhat, “Xen Full Virtualization Architecture [online]”, 2009, Available
from
http://docs.redhat.com/docs/enUS/Red_Hat_Enterprise_Linux/5/html/Vi
rtualization/glos.html, Accessed [7th Jul 2011].

[6] Amit Aneja, “Xen Hypervisor: Designig Embeded Virtualized Intel

Architecture [online]”, 2011, Available from
http://download.intel.com/design/intarch/PAPERS/325258.pdf,
Accessed [11 Jul 2011].

[7] Duilio Javier, “Linux KVM as a Learning Tool [online]”, 2009,
Available from http://www.linuxjournal.com/magazine/linux-kvm-
learning-tool, Accessed [12th Jul 2011].

[8] M. Tim Jones, “Discover the Linux Kernel Virtual Machine [online]”,
2007, Available from
http://www.ibm.com/developerworks/linux/library/l-linux-kvm/,
Accessed [15th Jul 2011].

[9] Xen Org, “Why Xen [online]”, 2008, Available from
http://www.xen.org/files/Marketing/WhyXen.pdf, Accessed [17th Jul
2011].

[10] Dan Magenheimer, "Memory overcommit [online]", 2008, Available
from http://xen.org/index.php/2008/08/27/xen-33-feature-memory-
overcommit/, Accessed [19th Jul 2011].

[11] Xen Team, "Interface manual [online]", 2004, Available from
http://www.xen.org/files/xen_interface.pdf, Accessed [21st Jul 2011].

[12] Paula Raune, "KVM and Xen cofounders engage in war of words",
2008, Avaialble from http://www.zdnet.com/virtualization/kvm-and-
xen-cofounders-engage-in-war-of-words/415, Accessed[21st Jul 2011].

 Sarfraz Nawaz Brohi* et al. / (IJAEST) INTERNATIONAL JOURNAL OF ADVANCED ENGINEERING SCIENCES AND TECHNOLOGIES
 Vol No. 9, Issue No. 1, 055 - 060

ISSN: 2230-7818 @ 2011 http://www.ijaest.iserp.org. All rights Reserved. Page 60

IJA
EST

http://www.redhat.com/f/pdf/rhev/DOC-KVM.pdf
https://www.ibm.com/developerworks/mydeveloperworks/%20c2028fdc,-
https://www.ibm.com/developerworks/mydeveloperworks/%20c2028fdc,-
http://www.linuxjournal.com/users/duilio-javier-protti
http://www.linuxjournal.com/magazine/linux-kvm-learning-tool
http://www.linuxjournal.com/magazine/linux-kvm-learning-tool
http://www.ibm.com/developerworks/linux/library/l-linux-kvm/#author1
http://www.zdnet.com/blog/virtualization/kvm-and-xen-cofounders-engage-in-war-of-words/415
http://www.zdnet.com/blog/virtualization/kvm-and-xen-cofounders-engage-in-war-of-words/415

